I need to solve
x^2 + 6x = 16 and i completely forgot how. Can someone show me the steps?
x^2 + 6x = 16 and i completely forgot how. Can someone show me the steps?
-
Lots of different methods....
By completing the square:
x^2 + 6x = 16
1(x^2 + 6x) = 16
1(x^2 + 6x + 3^2 - 3^2) = 16
1(x^2 + 6x + 9 -9) = 16
1(x^2 + 6x + 9) + 1(-9) = 16
1(x^2 + 6x + 9) - 9 = 16
(x+3)(x+3) = 16 + 9
(x+3)^2 = 25
√(x+3)^2 = +/- √25
x + 3 = +/- 5
x = -3 +/- 5
x1 = -3 - 5
x1 = -8
x2 = -3 + 5
x2 = 2
THEREFORE x = -8, 2
By quadratic formula:
x^2 +6x = 16
x^2 + 6x - 16 = 0 .... where a= 1, b = 6, c = -16
x = (-b +/- √(b^2-4ac)) / 2a
x = (-(6) +/- √((6)^2 -4(1)(-16))) / 2(1)
x = (-6 +/- √(36 -(-64))) / 2
x = (-6 +/- √100) / 2
x = (-6 +/- 10) / 2
x = 2(-3 +/- 5) / 2
x = -3 +/- 5
x1 = -3 - 5
x1 = -8
x2 = -3 + 5
x2 = 2
THEREFORE x = -8, 2
Solving by factoring by grouping
x^2 + 6x - 16 = 0
x^2 + 8x - 2x - 16 = 0
x(x+8) - 2(x+8) = 0
(x+8)(x-2) = 0
(x+8)=0 and (x-2)=0
x+8=0 and x-2=0
x= -8 and x = 2
THEREFORE x = -8, 2
By completing the square:
x^2 + 6x = 16
1(x^2 + 6x) = 16
1(x^2 + 6x + 3^2 - 3^2) = 16
1(x^2 + 6x + 9 -9) = 16
1(x^2 + 6x + 9) + 1(-9) = 16
1(x^2 + 6x + 9) - 9 = 16
(x+3)(x+3) = 16 + 9
(x+3)^2 = 25
√(x+3)^2 = +/- √25
x + 3 = +/- 5
x = -3 +/- 5
x1 = -3 - 5
x1 = -8
x2 = -3 + 5
x2 = 2
THEREFORE x = -8, 2
By quadratic formula:
x^2 +6x = 16
x^2 + 6x - 16 = 0 .... where a= 1, b = 6, c = -16
x = (-b +/- √(b^2-4ac)) / 2a
x = (-(6) +/- √((6)^2 -4(1)(-16))) / 2(1)
x = (-6 +/- √(36 -(-64))) / 2
x = (-6 +/- √100) / 2
x = (-6 +/- 10) / 2
x = 2(-3 +/- 5) / 2
x = -3 +/- 5
x1 = -3 - 5
x1 = -8
x2 = -3 + 5
x2 = 2
THEREFORE x = -8, 2
Solving by factoring by grouping
x^2 + 6x - 16 = 0
x^2 + 8x - 2x - 16 = 0
x(x+8) - 2(x+8) = 0
(x+8)(x-2) = 0
(x+8)=0 and (x-2)=0
x+8=0 and x-2=0
x= -8 and x = 2
THEREFORE x = -8, 2
-
Put the equation into standard form y = ax^2 +bx +c
-b +- sqrt(b^2 - 4ac)
= -----------------------------
2a
Root #1
= {-6 + sqrt[36 - 4(1)(-16)]} / 2(1) = {-6 + sqrt[100]}/2 = {-6 + 10}/2 = 4/2 = 2
Root #2
= {-6 - 10}/2 = -16/2 = -8
Astrobuf
-b +- sqrt(b^2 - 4ac)
= -----------------------------
2a
Root #1
= {-6 + sqrt[36 - 4(1)(-16)]} / 2(1) = {-6 + sqrt[100]}/2 = {-6 + 10}/2 = 4/2 = 2
Root #2
= {-6 - 10}/2 = -16/2 = -8
Astrobuf
-
Set it equal to zero, them use the quadratic formula. So...
Ax^2+bx+c=0
(-b +or- (b^2 -4ac)^1/2 (square root))/2a
(-6 +or- (36-32)^1/2)/2= -2 or -4
So the two solutions are -2 and -4. :)
Ax^2+bx+c=0
(-b +or- (b^2 -4ac)^1/2 (square root))/2a
(-6 +or- (36-32)^1/2)/2= -2 or -4
So the two solutions are -2 and -4. :)
-
move the 16 to the other side
x^2 +6x - 16 =0
simplify
(x+8)(x-2) = 0
x=-8 x=2
x^2 +6x - 16 =0
simplify
(x+8)(x-2) = 0
x=-8 x=2
-
x^2 + 6x = 16
x^2 + 6x - 16 = 0
(x + 8)(x - 2)
x^2 + 6x - 16 = 0
(x + 8)(x - 2)
-
x^2+6x-16=0
x^2+8x-2x-16=0
x(x+8)-2(x+8)=0
(x+8)(x-2)=0
x=-8 or x=2
x^2+8x-2x-16=0
x(x+8)-2(x+8)=0
(x+8)(x-2)=0
x=-8 or x=2