f(x)= {2 x<=-1
.........{ax+b -1
.........{-2 x>=3
.........{ax+b -1
-
Evaluate the function at the points x=-1, and x=3, and enforce continuity by setting the two expressions equal.
at x=-1,
2 = a*(-1) + b
==>
b-a = 2
at x = 3,
a*3 + b = -2
==>
3a+b = -2
solving the system for a and b gives
b-a = 2
3a+b = -2
==>
a=-1
b= 1
Thus,
f(x)= {2 x<=-1
.........{-x+1 -1
.........{-2 x>=3
at x=-1,
2 = a*(-1) + b
==>
b-a = 2
at x = 3,
a*3 + b = -2
==>
3a+b = -2
solving the system for a and b gives
b-a = 2
3a+b = -2
==>
a=-1
b= 1
Thus,
f(x)= {2 x<=-1
.........{-x+1 -1