cot^2x /(1+cscx)
cos^2x/sin^2x /(1+1/sinx)
1-sin^2x/sin^2x /sinx/sinx + 1/sinx
(1-sinx)(1+sinx)/sin^2x/sinx+1/sinx
(1-sinx)(1+sinx)/sin^2x *(sinx/sinx+1)
(1-sinx)(1+sinx)(sinx)/sin^2x(sinx+1)
(1-sinx)/sinx ANSWER
hope this helps :)
cos^2x/sin^2x /(1+1/sinx)
1-sin^2x/sin^2x /sinx/sinx + 1/sinx
(1-sinx)(1+sinx)/sin^2x/sinx+1/sinx
(1-sinx)(1+sinx)/sin^2x *(sinx/sinx+1)
(1-sinx)(1+sinx)(sinx)/sin^2x(sinx+1)
(1-sinx)/sinx ANSWER
hope this helps :)
-
There is more than one way to solve this:
You could:
Multiply the numerator and the denominator by 1 - csc x
You know that csc^2 (x) = cot^2(x)+ 1 = csc^2 (x) which means that 1 - csc^(x) = - cot^2(x)
Then
[cot^2(x)]/1+cscx
=[cot^2(x)] [1-cscx]/(1+cscx)(1-cscx)
= [cot^2(x)][1-cscx]/1-csc^2x
= [cot^2(x)][1-cscx]/1-csc^2x
= [cot^2(x)][1-cscx]/(-cot^2x)
= 1-cscx/(-1)
= cscx -1
= (1/sinx) - 1
= 1/sinx - sinx/sinx (to get common denominators)
= (1-sinx) / sinx
You could:
Multiply the numerator and the denominator by 1 - csc x
You know that csc^2 (x) = cot^2(x)+ 1 = csc^2 (x) which means that 1 - csc^(x) = - cot^2(x)
Then
[cot^2(x)]/1+cscx
=[cot^2(x)] [1-cscx]/(1+cscx)(1-cscx)
= [cot^2(x)][1-cscx]/1-csc^2x
= [cot^2(x)][1-cscx]/1-csc^2x
= [cot^2(x)][1-cscx]/(-cot^2x)
= 1-cscx/(-1)
= cscx -1
= (1/sinx) - 1
= 1/sinx - sinx/sinx (to get common denominators)
= (1-sinx) / sinx
-
cot^2(x)/1+cosecx
= cosec^2(x)-1 / cosecx +1
= cosec x-1
=(1/sinx) -1
=(1-sinx)/sinx
= cosec^2(x)-1 / cosecx +1
= cosec x-1
=(1/sinx) -1
=(1-sinx)/sinx