LHS = (tan θ) + (cot θ) / (sec²θ)
First simplify the numerator:
(tan θ) + (cot θ) = tanθ + (1/tanθ) = (1+tan²θ)/tanθ
Since 1+tan²θ = sec²θ, you can rewrite (1+tan²θ)/tanθ as sec²θ/tanθ
So on the left hand side you have
LHS = (sec²θ/tanθ)/sec²θ = (sec²θ/tanθ)*(1/sec²θ)
By cancelling out sec²θ you get
LHS = 1/tanθ = cotθ
First simplify the numerator:
(tan θ) + (cot θ) = tanθ + (1/tanθ) = (1+tan²θ)/tanθ
Since 1+tan²θ = sec²θ, you can rewrite (1+tan²θ)/tanθ as sec²θ/tanθ
So on the left hand side you have
LHS = (sec²θ/tanθ)/sec²θ = (sec²θ/tanθ)*(1/sec²θ)
By cancelling out sec²θ you get
LHS = 1/tanθ = cotθ
-
first less look at cotx/sec^2x. cotx=cosx/sinx and sec^2x=1/cos^2x
cosx/sinx*cos^2x=cos^3x/sinx
tanx+(cos^3x)/(sinx)
tanx=sinx/cosx
now multiply sinx/cosx by sinx/sinx and multiply cos^3x/sinx by cosx/cosx
[sin^2x+cos^4x]/(sinxcosx)
[1-cos^2x+cos^4x]/(sinxcosx)
cosx/sinx*cos^2x=cos^3x/sinx
tanx+(cos^3x)/(sinx)
tanx=sinx/cosx
now multiply sinx/cosx by sinx/sinx and multiply cos^3x/sinx by cosx/cosx
[sin^2x+cos^4x]/(sinxcosx)
[1-cos^2x+cos^4x]/(sinxcosx)
-
from tanx + cotx = 1/(sinx cosx)
and sec^2 x = 1/cos^2 x
left hand side = cosx/sinx = cot x <---right hand side
and sec^2 x = 1/cos^2 x
left hand side = cosx/sinx = cot x <---right hand side
-
wat