Find a formula for:
1+cos(x)+cos(2x)+ ... + cos(nx)
Any help?
1+cos(x)+cos(2x)+ ... + cos(nx)
Any help?
-
cos(x) = (exp(ix) + exp(-ix)) / 2
=> sum cos(kx) (k=0->n)
= sum (1/2) exp(ikx)
+ sum (1/2) exp(-ikx)
(k=0->n)
= (1/2) ((1 - exp(i(k+1)x))/(1 - exp(ix)) + (1 - exp(-i(k+1)x))/(1 - exp(-ix)))
(geometric series)
=> sum cos(kx) (k=0->n)
= sum (1/2) exp(ikx)
+ sum (1/2) exp(-ikx)
(k=0->n)
= (1/2) ((1 - exp(i(k+1)x))/(1 - exp(ix)) + (1 - exp(-i(k+1)x))/(1 - exp(-ix)))
(geometric series)