compute integral of the following function when upper bound is 6 and lower bound is 4
f(x)=(5(x^2)+1)/(x^2)
f(x)=(5(x^2)+1)/(x^2)
-
(5x^2 + 1) / x^2 =>
(5x^2 / x^2) + 1 / x^2 =>
5 + x^(-2)
Integrate:
5x - x^(-1)
From 4 to 6
5 * 6 - 6^(-1) - 5 * 4 + 4^(-1) =>
5 * (6 - 4) - (1/6) + (1/4) =>
5 * 2 + (6/24 - 4/24) =>
10 + (2/24) =>
10 + (1/12) =>
(120 + 1) / 12 =>
121/12
(5x^2 / x^2) + 1 / x^2 =>
5 + x^(-2)
Integrate:
5x - x^(-1)
From 4 to 6
5 * 6 - 6^(-1) - 5 * 4 + 4^(-1) =>
5 * (6 - 4) - (1/6) + (1/4) =>
5 * 2 + (6/24 - 4/24) =>
10 + (2/24) =>
10 + (1/12) =>
(120 + 1) / 12 =>
121/12