The derivative of cot(x) is -csc^2(x)
Let u = cot(x), then du = -csc^2(x)dx and -du = csc^2(x)dx
So we now have ∫ -u^9 du = -((u^10) / 10) + C
Substituting cot(x) back for u we get the following answer: ((-cot^(10)) / 10) + C
.
Let u = cot(x), then du = -csc^2(x)dx and -du = csc^2(x)dx
So we now have ∫ -u^9 du = -((u^10) / 10) + C
Substituting cot(x) back for u we get the following answer: ((-cot^(10)) / 10) + C
.