Integral of Cot^9(x)Csc^2(x)dx
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Integral of Cot^9(x)Csc^2(x)dx

Integral of Cot^9(x)Csc^2(x)dx

[From: ] [author: ] [Date: 11-05-11] [Hit: ]
......
The derivative of cot(x) is -csc^2(x)

Let u = cot(x), then du = -csc^2(x)dx and -du = csc^2(x)dx

So we now have ∫ -u^9 du = -((u^10) / 10) + C

Substituting cot(x) back for u we get the following answer: ((-cot^(10)) / 10) + C

.
1
keywords: Csc,Integral,Cot,dx,of,Integral of Cot^9(x)Csc^2(x)dx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .