A certain quantity Q increases at a rate proportional to itself. If Q = 25 when T = 0 and Q = 75 when T = 2. Find Q when T = 6.
-
This means that (Q(T+dT) -Q(T)) DT= KQ(T)
dQ= K Q(T) dT
dQ/Q = KdT
LnQ = KT + C
Q(T)=e^(KT+C)
Q(T)= e^KT * e^C ( e^C is a new constant = R)
Q(T) = Re^KT
At T=0 Q= 25
25=Re^0
R=25
Q(T)= 25e^KT
At T=2 , Q=75
75= 25e^2K
e^2K= 3
K= (1/2) Ln3
Q(T)= 25e^(T/2)Ln3
At T=6
Q(6)= 25e^(3Ln3)
dQ= K Q(T) dT
dQ/Q = KdT
LnQ = KT + C
Q(T)=e^(KT+C)
Q(T)= e^KT * e^C ( e^C is a new constant = R)
Q(T) = Re^KT
At T=0 Q= 25
25=Re^0
R=25
Q(T)= 25e^KT
At T=2 , Q=75
75= 25e^2K
e^2K= 3
K= (1/2) Ln3
Q(T)= 25e^(T/2)Ln3
At T=6
Q(6)= 25e^(3Ln3)