Determine the Integral : ∫ [1+(e^-x)^1/2]/(e^x)^1/2 dx
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Determine the Integral : ∫ [1+(e^-x)^1/2]/(e^x)^1/2 dx

Determine the Integral : ∫ [1+(e^-x)^1/2]/(e^x)^1/2 dx

[From: ] [author: ] [Date: 11-05-06] [Hit: ]
= ∫ [e^(-x/2) + e^(-x)] dx,= -2e^(-x/2) - e^(-x) + C, by integrating.I hope this helps!-........
Note that, by the laws of exponents, you can write:
[e^(-x)]^(1/2) = e^(-x/2) and (e^x)^(1/2) = e^(x/2).

So, we have:
∫ {1 + [e^(-x)]^(1/2)}/(e^x)^(1/2) dx
= ∫ [1 + e^(-x/2)]/e^(x/2) dx
= ∫ [e^(-x/2) + e^(-x)] dx, by the laws of exponents
= -2e^(-x/2) - e^(-x) + C, by integrating.

I hope this helps!

-
... ∫ { [ 1 + √(ℯֿˣ) ] / √(ℯˣ) } dx ....................... Now Split

= ∫ { [ 1 / √(ℯˣ) ] + [ √(ℯֿˣ) / √(ℯˣ) ] } dx

= ∫ √(ℯֿˣ) dx + ∫ √(ℯֿ²ˣ) dx

= ∫ ℯֿˣʹ² dx + ∫ ℯֿˣ dx ................ Now Use : ∫ ℯªˣ dx = ( ℯªˣ ) / (a)

= [ ℯֿˣʹ² / (-1/2) ] + [ - ℯֿˣ ] + C

= -2 ℯֿˣʹ² - ℯֿˣ + C .................................. Ans.
__________________________

Happy To Help !
__________________________
1
keywords: Determine,Integral,dx,the,int,Determine the Integral : ∫ [1+(e^-x)^1/2]/(e^x)^1/2 dx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .