Note that, by the laws of exponents, you can write:
[e^(-x)]^(1/2) = e^(-x/2) and (e^x)^(1/2) = e^(x/2).
So, we have:
∫ {1 + [e^(-x)]^(1/2)}/(e^x)^(1/2) dx
= ∫ [1 + e^(-x/2)]/e^(x/2) dx
= ∫ [e^(-x/2) + e^(-x)] dx, by the laws of exponents
= -2e^(-x/2) - e^(-x) + C, by integrating.
I hope this helps!
[e^(-x)]^(1/2) = e^(-x/2) and (e^x)^(1/2) = e^(x/2).
So, we have:
∫ {1 + [e^(-x)]^(1/2)}/(e^x)^(1/2) dx
= ∫ [1 + e^(-x/2)]/e^(x/2) dx
= ∫ [e^(-x/2) + e^(-x)] dx, by the laws of exponents
= -2e^(-x/2) - e^(-x) + C, by integrating.
I hope this helps!
-
... ∫ { [ 1 + √(ℯֿˣ) ] / √(ℯˣ) } dx ....................... Now Split
= ∫ { [ 1 / √(ℯˣ) ] + [ √(ℯֿˣ) / √(ℯˣ) ] } dx
= ∫ √(ℯֿˣ) dx + ∫ √(ℯֿ²ˣ) dx
= ∫ ℯֿˣʹ² dx + ∫ ℯֿˣ dx ................ Now Use : ∫ ℯªˣ dx = ( ℯªˣ ) / (a)
= [ ℯֿˣʹ² / (-1/2) ] + [ - ℯֿˣ ] + C
= -2 ℯֿˣʹ² - ℯֿˣ + C .................................. Ans.
__________________________
Happy To Help !
__________________________
= ∫ { [ 1 / √(ℯˣ) ] + [ √(ℯֿˣ) / √(ℯˣ) ] } dx
= ∫ √(ℯֿˣ) dx + ∫ √(ℯֿ²ˣ) dx
= ∫ ℯֿˣʹ² dx + ∫ ℯֿˣ dx ................ Now Use : ∫ ℯªˣ dx = ( ℯªˣ ) / (a)
= [ ℯֿˣʹ² / (-1/2) ] + [ - ℯֿˣ ] + C
= -2 ℯֿˣʹ² - ℯֿˣ + C .................................. Ans.
__________________________
Happy To Help !
__________________________