What's the integral of 12x/(x^2+1)?
-
∫ 12x/(x² + 1) dx
Let u = x² + 1. Then,
du/dx = 2x dx
du = 2x dx
So:
∫ (2x dx)6/u
= ∫ 6/u du
= 6 ∫ 1/u du
Finally, we obtain:
6ln|u| + c
= 6ln(x² + 1) + c
I hope this helps!
Let u = x² + 1. Then,
du/dx = 2x dx
du = 2x dx
So:
∫ (2x dx)6/u
= ∫ 6/u du
= 6 ∫ 1/u du
Finally, we obtain:
6ln|u| + c
= 6ln(x² + 1) + c
I hope this helps!
-
take x^2+1=t
differentiating , 2x.dx=dt
Now substitute in integral ∫ (6.dt)/t = 6.(ln|t|+c1)
Now substitute t back to x^2+1
so we get the answer as 6.ln(x^2+1)+c2
differentiating , 2x.dx=dt
Now substitute in integral ∫ (6.dt)/t = 6.(ln|t|+c1)
Now substitute t back to x^2+1
so we get the answer as 6.ln(x^2+1)+c2
-
int(12*x/(x^2 + 1), x) = 6*ln(x^2 + 1) + C
-
INTEGRAL(12x/(1+x^2) dx]
u=1+x^2 then du=2x dx and then 12x dx=6 du
INTGERAL[6/u du]
=6 ln u + C
=6 ln(1+x^2) +C
u=1+x^2 then du=2x dx and then 12x dx=6 du
INTGERAL[6/u du]
=6 ln u + C
=6 ln(1+x^2) +C
-
hint: u = x^2 + 1