Limit function.........................
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Limit function.........................

Limit function.........................

[From: ] [author: ] [Date: 11-04-30] [Hit: ]
......
lim x→0 ((18x - 2sin 5x)/(tan10x - 3sin4x) )

lim x→¼π ( 8cosx - 8sinx )/(x - π/4)

-
Using L'hôpital's rule

We have limit (f(x) / g(x)) as x tends to c

If f and g tend to 0 and the derivative of them exists then

(f(x) / g(x)) as x tends to c = (f'(x) / g'(x)) as x tends to c

a)
f'(x) = 18-10*cos(5*x)
f'(0) = 18 - 10 = 8

g'(x) = 10+10*tan²(10*x)-12*cos(4*x)
g'(0) = 10 + 0 - 12 = -2

f'(0) / g'(0) = -4.

b)

f'(x) = -8*sin(x)-8*cos(x)
f'(π/4) = -8√2

g'(x) = 1
g'(π/4) = 1

f'(π/4) / g'(π/4) = -8√2
1
keywords: function,Limit,Limit function.........................
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .