Please show work/explanation. Obnoxious and irrelevant answers will be reported.
f(x)=ln(x+3)-2
f(x)=ln(x+3)-2
-
You switch the x and y variables and then solve for the new y.
f(x) = ln(x + 3) - 2
y = ln(x + 3) - 2
x = ln(y + 3) - 2
x + 2 = ln(y + 3)
e^(x + 2) = y + 3
e^(x + 2) - 3 = y
f^-1(x) = e^(x + 2) - 3 <===ANSWER
f(x) = ln(x + 3) - 2
y = ln(x + 3) - 2
x = ln(y + 3) - 2
x + 2 = ln(y + 3)
e^(x + 2) = y + 3
e^(x + 2) - 3 = y
f^-1(x) = e^(x + 2) - 3 <===ANSWER
-
f(x)=ln(x+3)-2
step 1: let y=f(x)
y = ln(x+3)-2
step 2: change (swap) all x to y and all y to x
x = ln(y+3)-2
step 3: solve for y
x+2 = ln(y+3)
y+3 = e^(x+2)
y = -3 + e^(x+2)
step 4: let y = f-1(x)
f-1(x) = -3 + e^(x+2) <---- inverse function of x
step 1: let y=f(x)
y = ln(x+3)-2
step 2: change (swap) all x to y and all y to x
x = ln(y+3)-2
step 3: solve for y
x+2 = ln(y+3)
y+3 = e^(x+2)
y = -3 + e^(x+2)
step 4: let y = f-1(x)
f-1(x) = -3 + e^(x+2) <---- inverse function of x
-
---
y = ln(x+3) - 2
Switch x and y then solve for y.
x = ln(y+3) -2
e^x = e^(ln(y+3) - 2)
e^x = e^(ln(y+3))/e^2
e^x * e^2 = (y+3)
y = e^(x+2) - 3
y = ln(x+3) - 2
Switch x and y then solve for y.
x = ln(y+3) -2
e^x = e^(ln(y+3) - 2)
e^x = e^(ln(y+3))/e^2
e^x * e^2 = (y+3)
y = e^(x+2) - 3