Find the limit of the sequence
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Find the limit of the sequence

Find the limit of the sequence

[From: ] [author: ] [Date: 11-04-24] [Hit: ]
= 4.So,L = lim (n-->infinity) [e^(4n) + n^2]^(1/n) = e^4.Finally, the limit equals 1/L = 1/e^4 = e^(-4).I hope this helps!......
find the limit of the sequence whose terms are given by:

an = [(1/(e^(4n) + n^2))]^(1/n)

-
We have:
lim (n-->infinity) a_n
= lim (n-->infinity) {1/[e^(4n) + n^2]}^(1/n)
= lim (n-->infinity) 1/[e^(4n) + n^2]/^(1/n)
= 1/{lim (n-->infinity) [e^(4n) + n^2]^(1/n)}.

Then, if we let:
L = lim (n-->infinity) [e^(4n) + n^2]^(1/n),

and take the natural log of both sides, we get:
ln(L) = lim (n-->infinity) ln{[e^(4n) + n^2]^(1/n)}
= lim (n-->infinity) {(1/n)ln[e^(4n) + n^2]}
= lim (n-->infinity) ln[e^(4n) + n^2]/n.

Then, by applying L'Hopital's Rule:
ln(L) = lim (n-->infinity) ln[e^(4n) + n^2]/n
= lim (n-->infinity) [4e^(4n) + 2n]/[e^(4n) + n^2]
= 4.

So, since ln(L) = 4:
L = lim (n-->infinity) [e^(4n) + n^2]^(1/n) = e^4.

Finally, the limit equals 1/L = 1/e^4 = e^(-4).

I hope this helps!
1
keywords: limit,sequence,the,of,Find,Find the limit of the sequence
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .