Find all solutions of
a)e^z=1,
b)e^z=-3,
c)e^z=i,
d)e^z=i+1
a)e^z=1,
b)e^z=-3,
c)e^z=i,
d)e^z=i+1
-
e^z = 1
z = ln(1)
z = 0
e^(z) = -3
e^z = -3 + i * 0
e^z = 3 * (-1 + i * 0)
e^z = 3 * (cos(pi) + i * sin(pi))
e^z = 3 * e^(pi * i)
z = ln(3 * e^(pi * i))
z = ln(3) + ln(e^(pi * i))
z = ln(3) + pi * i
e^z = i
e^z = 0 + i
e^z = cos(pi/2) + i * sin(pi/2)
e^z = e^((pi/2) * i)
z = (pi/2) * i
e^z = 1 + i
e^z = (1/sqrt(2)) * (sqrt(2) + i * sqrt(2))
e^z = (sqrt(2)/2) * (sqrt(2) + i * sqrt(2))
e^z = sqrt(2) * (sqrt(2)/2 + i * sqrt(2)/2)
e^z = sqrt(2) * (cos(pi/4) + i * sin(pi/4))
e^z = sqrt(2) * e^((pi/4) * i)
z = ln(2^(1/2) * e^((pi/4) * i))
z = ln(2^(1/2)) + ln(e^((pi/4) * i)
z = (1/2) * ln(2) + (pi/4) * i
z = ln(1)
z = 0
e^(z) = -3
e^z = -3 + i * 0
e^z = 3 * (-1 + i * 0)
e^z = 3 * (cos(pi) + i * sin(pi))
e^z = 3 * e^(pi * i)
z = ln(3 * e^(pi * i))
z = ln(3) + ln(e^(pi * i))
z = ln(3) + pi * i
e^z = i
e^z = 0 + i
e^z = cos(pi/2) + i * sin(pi/2)
e^z = e^((pi/2) * i)
z = (pi/2) * i
e^z = 1 + i
e^z = (1/sqrt(2)) * (sqrt(2) + i * sqrt(2))
e^z = (sqrt(2)/2) * (sqrt(2) + i * sqrt(2))
e^z = sqrt(2) * (sqrt(2)/2 + i * sqrt(2)/2)
e^z = sqrt(2) * (cos(pi/4) + i * sin(pi/4))
e^z = sqrt(2) * e^((pi/4) * i)
z = ln(2^(1/2) * e^((pi/4) * i))
z = ln(2^(1/2)) + ln(e^((pi/4) * i)
z = (1/2) * ln(2) + (pi/4) * i