f'(x) = 8x+12
integrate both sides
you get
f(x) = 4 x^2 +12x + C (C is a constant )
to find C, put x=7 so f(7) = -4
imply -4 = 49 *4 +12 *7 + C
you get C = -284
so f(x) = 4x^2 + 12x -284
integrate both sides
you get
f(x) = 4 x^2 +12x + C (C is a constant )
to find C, put x=7 so f(7) = -4
imply -4 = 49 *4 +12 *7 + C
you get C = -284
so f(x) = 4x^2 + 12x -284
-
antiderivative of f'(x) = 4x^2 + 12x + C
-4 = (4)(49) + (12)(7) + C
C = -284
f(x) = 4x^2 + 12x -284
-4 = (4)(49) + (12)(7) + C
C = -284
f(x) = 4x^2 + 12x -284
-
If f'(x) = 8x + 12 then
f(x) = 4x^2 + 12x + k
f(7) = 4*7^2 + 12*7 + k = 280 + k
280 + k = -4
k = -284
f(x) = 4x^2 + 12x - 284
f(x) = 4x^2 + 12x + k
f(7) = 4*7^2 + 12*7 + k = 280 + k
280 + k = -4
k = -284
f(x) = 4x^2 + 12x - 284
-
f(x)=4x^2+12x+C
f(7)=-4=4(7^2)+12(7)+C
-4=4(49)+84+C
-88=196+C
C=-284
so f(x)=4x^2+12x-284
f(7)=-4=4(7^2)+12(7)+C
-4=4(49)+84+C
-88=196+C
C=-284
so f(x)=4x^2+12x-284