How do I solve the integral of (1/[x^2*sqrt(324-x^2)] dx)
Favorites|Homepage
Subscriptions | sitemap
HOME > > How do I solve the integral of (1/[x^2*sqrt(324-x^2)] dx)

How do I solve the integral of (1/[x^2*sqrt(324-x^2)] dx)

[From: ] [author: ] [Date: 12-02-11] [Hit: ]
Please help me understand this.-Let x = √324 sin t = 18 sin t.==> dx = 18 cos t dt.So,= (-1/324) * √(324 - x^2)/x + C,I hope this helps!......
I know the answer is (-sqrt(324-x^2))/(324x) but when I try to solve it I get (-arcsin(x/18))/(x). I am using the method of trigonometric substitution and I set x^2/324=sin^2\theta then x=18*sin\theta and dx=18*cos\theta d\theta. Please help me understand this.

-
Let x = √324 sin t = 18 sin t.
==> dx = 18 cos t dt.

So, ∫ dx / [x^2 √(324 - x^2)]
= ∫ 18 cos t dt / [(18 sin t)^2 √(324 cos^2(t))]
= ∫ dt/(18 sin t)^2
= (1/324) ∫ csc^2(t) dt
= (1/324) * -cot t + C
= (-1/324) * √(324 - x^2)/x + C, via sin t = x/18 and 'sohcahtoa'

I hope this helps!
1
keywords: dx,of,sqrt,integral,solve,How,do,324,the,How do I solve the integral of (1/[x^2*sqrt(324-x^2)] dx)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .