Differentiate with respect to x:
lnx divided by x²
Thanks in advance
lnx divided by x²
Thanks in advance
-
Use quotient rule:
d/dx (lnx / x²) = (d/dx (lnx) * x² − lnx * d/dx (x²)) / (x²)²
. . . . . . . . . . . = (1/x * x² − lnx * 2x) / x⁴
. . . . . . . . . . . = (x − 2x lnx) / x⁴
. . . . . . . . . . . = x (1 − 2 lnx) / x⁴
. . . . . . . . . . . = (1 − 2 lnx) / x³
d/dx (lnx / x²) = (d/dx (lnx) * x² − lnx * d/dx (x²)) / (x²)²
. . . . . . . . . . . = (1/x * x² − lnx * 2x) / x⁴
. . . . . . . . . . . = (x − 2x lnx) / x⁴
. . . . . . . . . . . = x (1 − 2 lnx) / x⁴
. . . . . . . . . . . = (1 − 2 lnx) / x³
-
Write ln x / x^2 as such ln x * x^(-2). Derivate with respect to x is
1/x* x^(-2) + ln x * (-2 ) x^( -3 ) =
(1-2lnx) / x ^ 3
Bye
1/x* x^(-2) + ln x * (-2 ) x^( -3 ) =
(1-2lnx) / x ^ 3
Bye